今天给各位分享数学的起源与发展的知识,其中也会对数学的起源与发展教案进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
数学的起源与发展是什么?
数学起源于人类早期的生产活动数学的起源与发展,古巴比伦人从远古时代开始已经积累数学的起源与发展了一定的数学知识数学的起源与发展,并能应用实际问题。从数学本身看,数学的起源与发展他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展。但当时的代数学和几何学长久以来仍处于独立的状态。
代数学可以说是最为人们广泛接受的“数学”。可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学。而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一。几何学则是最早开始被人们研究的数学分支。
直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起。从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程与三角函数。而其后更发展出更加精微的微积分。
现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。他们认为,数学有三种基本的母结构:代数结构(群、环、域、格,……)、序结构(偏序、全序,……)、拓扑结构(邻域、极限、连通性、维数,……)。
数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用。
具体地,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学)。就纵度而言,在数学各自领域上的探索亦越发深入。
数学的发展历史
数学的发展史大致可以分为四个时期。第一时期是数学形成时期,第二时期是常量数学时期等。其研究成果有李氏恒定式、华氏定理、苏氏锥面。
第一时期
数学形成时期,这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。
第二时期
初等数学,即常量数学时期。这个时期的基本的、最简单的成果构成中学数学的主要内容。这个时期从公元前5世纪开始,也许更早一些,直到17世纪,大约持续了两千年。这个时期逐渐形成了初等数学的主要分支:算数、几何、代数。
第三时期
变量数学时期。变量数学产生于17世纪,大体上经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分,即高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学、方程及其应用。
微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
第四时期
现代数学。现代数学时期,大致从19世纪初开始。数学发展的现代阶段的开端,以其所有的基础--------代数、几何、分析中的深刻变化为特征。
拓展资料:
华罗庚
中华民族是一个具有灿烂文化和悠久历史的民族,在灿烂的文化瑰宝中数学在世界数学发展史中也同样具有许多耀眼的光环。中国古代算数的许多研究成果里面就早已孕育了后来西方数学才设计的先进思想方法,近代也有不少世界领先的数学研究成果就是以华人数学家命名的。
李氏恒定式
数学家李善兰在级数求和方面的研究成果,在国际上被命名为【李氏恒定式】
华氏定理
“华氏定理”是我国著名数学家华罗庚的研究成果。 华氏定理为:体的半自同构必是自同构自同体或反同体。 数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被国际上誉为“华—王方法”。
苏氏锥面
数学家苏步青在仿射微分几何学方面的研究成果在国际上被命名为“苏氏锥面”。
苏步青院士对仿射微分几何的一个极其美妙的发现是:他对一般的曲面,构做出一个访射不变的4次代数锥面。在访射的曲面理论中为人们许多协变几何对象,包括2条主切曲线,3条达布切线,3条塞格雷切线和仿射法线等等,都可以由这个锥面和它的3根尖点直线以美妙的方式体现出来。
这个锥面被命名为苏氏锥面。
参考资料来源:百度百科--数学发展史
数学的由来是什么?
数学的由来:
1、从人类的角度:
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。
2、从时间的角度:
数学起源于公元前4世纪。公元前6世纪前,数学主要是关于“数”的研究。这一时期在古埃及、巴比伦、印度与中国等地区发展起来的数学,主要是计数、初等算术与算法,几何学则可以看作是应用算术。
扩展资料:
数学的发展史:
1、从公元前6世纪开始,希腊数学的兴起,突出了对“形”的研究。数学于是成为了关于数与形的研究。公元前4世纪的希腊哲学家亚里士多德将数学定义为“数学是量的科学。”
2、直到16世纪,英国哲学家培根将数学分为“纯粹数学”与“混合数学”。在17世纪,笛卡儿认为:“凡是以研究顺序和度量为目的科学都与数学有关。”
3、在19世纪,根据恩格斯的论述, 数学可以定义为:“数学是研究现实世界的空间形式与数量关系的科学。”
4、从20世纪80年代开始,学者们将数学简单的定义为关于“模式”的科学:“数学这个领域已被称为模式的科学, 其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。”
5、现代数学已包括多个分支,数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用。
参考资料:数学-百度百科
数学的起源和发展
数学与其他科学分支一样数学的起源与发展,是在一定的社会条件下,通过人类的社会实践和生产活动发展起来的一种智力积累.其主要内容反映了现实世界的数量关系和空间形式,以及它们之间的关系和结构.这可以从数学的起源得到印证.
古代非洲的尼罗河、西亚的底格里斯河和幼发拉底河、中南亚的印度河和恒河以及东亚的黄河和长江,是数学的发源地.这些地区的先民由于从事农业生产的需要,从控制洪水和灌溉,测量田地的面积、计算仓库的容积、推算适合农业生产的历法以及相关的财富计算、产品交换等等长期实践活动中积累了丰富的经验,并逐渐形成了相应的技术知识和有关的数学知识. 数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科数学的起源与发展:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。”
生活中,数学无处不在数学的起源与发展!那麼,数学是怎样产生的?它起源於何时呢?这可是些不易回答的问题,因为基本数学概念的原始积累过程,发生在人类创造出文字来记录自己的思想之前。
关於数学的起源,流传着一些古老而神奇的传说。相传在非常非常遥远的古代,有一天,从黄河的波涛中忽然跳出一匹“龙马”来,马背上驮着一幅图,图上画着许多神秘的数学符号,后来,从波澜不惊的洛水里,又爬出一只“神龟”来,龟背上也驮着一卷书,书中阐述了数的排列方法。马背上的图叫做“河图”,龟背上的书叫做“洛书”,当“河图洛书”出现之后,数学也就诞生了。
数学是一门最古老的学科,它的起源可以上溯到一万多年以前。但是,公元1000年以前的资料留存下来的极少。迄今所知,只有在古代埃及和巴比伦发现了比较系统的数学文献。
远在1万5千年前人类就已经能相当逼真地描绘出人和动物的形象。这是萌发图形意识的最早证据。后来就逐渐开始了对圆形和直线形的追求,因而成为数学图形的最早的原型。在日常生活和生产实践中又逐渐产生了计数意识和计数系统,人类摸索过多种记数方法,有开始的结绳记数,用石块记数,语言点数进一步用符号,逐步发展到今天我们所用的数字。图形意识和计数意识发展到一定程度,又产生了度量意识。
这一系列的发展演变逐渐形成了今天我们所熟悉的完整的数学这一门学科,它包括算术、几何、代数、三角、微积分、统计和概率(其实它一开始是人们为了钻研赌博而来的呢)……等等各个分支,而且现在还在不断发展下去。
看,这就是数学的起源以及其发展经过!是否明白呢?
数学发展历史是什么?
数学发展如下:
第一时期
数学形成时期,这是人类建立最基本的数学概念的时期,人类从数数开始逐渐建立数学的起源与发展了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。
第二时期
初等数学,即常量数学时期,这个时期的基本的、最简单的成果构成中学数学的主要内容,这个时期从公元前5世纪开始,也许更早一些,直到17世纪,大约持续了两千年,这个时期逐渐形成了初等数学的主要分支算术、几何、代数。
第三时期
变量数学时期,变量数学产生于17世纪,大体上经历了两个决定性的重大步骤,第一步是解析几何的产生,第二步是微积分,即高等数学中研究函数的微分、积分以及有关概念和应用的数学分支,它是数学的一个基础学科,内容主要包括极限、微分学、积分学、方程及其应用。
微分学包括求导数的运算,是一套关于变化率的理论,它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论,积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
第四时期
现代数学,现代数学时期,大致从19世纪初开始,数学发展的现代阶段的开端,以其所有的基础代数、几何、分析中的深刻变化为特征。
中华民族是一个具有灿烂文化和悠久历史的民族,在灿烂的文化瑰宝中数学在世界数学发展史中也同样具有许多耀眼的光环,中国古代算术的许多研究成果里面就早已孕育了后来西方数学才设计的先进思想方法,近代也有不少世界领先的数学研究成果就是以华人数学家命名的。
华氏定理是数学的起源与发展我国著名数学家华罗庚的研究成果,华氏定理为体的半自同构必是自同构自同体或反同体,数学家华罗庚关于完整三角和的研究成果被国际数学界称为华氏定理,另外他与数学家王元提出多重积分近似计算的方法被国际上誉为华—王方。
苏氏锥面数学家苏步青在仿射微分几何学方面的研究成果在国际上被命名为苏氏锥面。
苏步青院士对仿射微分几何的一个极其美妙的发现是他对一般的曲面,构做出一个访射不变的4次代数锥面。
在访射的曲面理论中为人们许多协变几何对象,包括2条主切曲线,3条达布切线,3条塞格雷切线和仿射法线等等,都可以由这个锥面和它的3根尖点直线以美妙的方式体现出来,这个锥面被命名为苏氏锥面。
数学起源于哪里?
数学起源于公元前4世纪。公元前6世纪前,数学主要是关于“数”的研究。这一时期在古埃及、巴比伦、印度与中国等地区发展起来的数学,主要是计数、初等算术与算法,几何学则可以看作是应用算术。
从公元前6世纪开始,希腊数学的兴起,突出了对“形”的研究。数学于是成为了关于数与形的研究。公元前4世纪的希腊哲学家亚里士多德将数学定义为“数学是量的科学。”(其中“量”的涵义是模糊的,不能单纯理解为“数量”。)
直到16世纪,英国哲学家培根将数学分为“纯粹数学”与“混合数学”。在17世纪,笛卡儿认为:“凡是以研究顺序和度量为目的科学都与数学有关。”在19世纪,根据恩格斯的论述, 数学可以定义为:“数学是研究现实世界的空间形式与数量关系的科学。”
从20世纪80年代开始,学者们将数学简单的定义为关于“模式”的科学:“数学这个领域已被称为模式的科学, 其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。”
拓展资料:
学数学意义
学数学的意义就是不光会做老师们纯粹为了考大家的题目,更重要的是把这些讨厌的问题变成人人都喜闻乐见的实际性成果,数学家们是默默无闻却强大无比的历史推进者!
掌握数字规律,训练逻辑思维,能训练人们的思维能力.开发脑力.更理性的去认识这个世界.数学一种工具,它逻辑性强,能训练人们的思维能力;它注重方式方法,能让你的思维更敏锐;再者就是能帮助你解决一些实际问题 掌握数字规律,训练逻辑思维,数学是一门基础学科,除了语言学科以外,其他学科基本上都会运用到数学.意义深远!
写到这里,本文关于数学的起源与发展和数学的起源与发展教案的介绍到此为止了,如果能碰巧解决你现在面临的问题,如果你还想更加了解这方面的信息,记得收藏关注本站。
标签: #数学的起源与发展
评论列表